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Abstract

Damping vibrations is important in the design of some types of inertial sensing de-
vices. One method for adding damping to a device is to use magnetic forces generated
by a static magnetic field interacting with eddy currents. In this report, we develop a 2-
dimensional finite element model for the analysis of quasistatic eddy currents in a thin
sheet of conducting material. The model was used for design and sensitivity analyses
of a novel mechanical oscillator that consists of a shuttle mass (thin sheet of conduct-
ing material) and a set of folded spring elements. The oscillator is damped through
the interaction of a static magnetic field and eddy currents in the shuttle mass. Using
a prototype device and Laser Dopler Velocimetry (LDV), measurements were com-
pared to the model in a validation study using simulation based uncertainty analyses.
Measurements were found to follow the trends predicted by the model.
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On the Modeling, Design and
Validation of Two Dimensional

Quasi-static Eddy Currents Forces
in a Mechanical Oscillator

1 Introduction

Magnetic forces generated by a static magnetic field interacting with eddy currents can be
a novel means of damping vibrations. The existence and mechanisms for generation of
eddy currents is well known and documented in the physics and engineering communities.
Predictive modelling strategies are less well known although it is critically important for
developing devices.

In this paper we focus on a simple mathematical model for quasi-static analyses that is
particularly useful for modelling 21

2D applications in which a static magnetic field ~B = Bzk̂
is perpindicular to and pass through a thin sheet of conducting material. The thin sheet of
material is non-magnetic and, for modelling purposes, we treat it as a plane (x− y plane)
in which eddy currents ~J will flow. It is the thin conducting sheet of material on which
damping forces will be generated. The free charge distribution in the conductor is disturbed
when it moves through the magnetic field thereby setting up eddy currents. Subsequently,
the eddy currents interact with the static magnetic field creating magnetic forces that act on
the conductor. Currents and forces induced due to the motion of the conductor through the
magnetic field are commonly described using Lenz’s law [2]:

“If a current flows, it will be in such a direction that the magnetic field it pro-
duces tends to counteract the change in flux that induced the emf.”

Magnetic forces ~f per unit volume acting on the conductor are given by the simple
formula:

~f = ~J×~B. (1)

Using Ohm’s law, the current density is proportional to the driving force:

~J = σ~v×~B. (2)

where σ is the conductivity of the thin metal conductor, and ~v is the conductor velocity.
For the simplified conditions we are considering here, Equations (1) and (2) used together
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produce a formula for the force acting on the conductor that is qualitatively consistent with
Lenz’s law. The resulting formula is expressed as a function of the field strength Bz and
conductor velocity~v = vî

~f =−σvBz
2 î. (3)

The salient features of the above formula are its simplicity and qualitative correctness. We
note that the body force direction is always the opposite of the velocity and secondly its
magnitude is proportional to the magnitude of the velocity. In form, it looks like a linear
viscous damping.

While the force formula in Eq. 3 is simple to use and qualitatively correct, it over-
predicts the resulting magnetic force [7], [4]. An enhancement to the above model is to
begin with the following formula for the electromotive force

~J = σ(~E +~v×~B), (4)

where ~E is the quasi-static electric field. Taking the curl of both sides and using vector
identities we arrive at:

∇ × ~J =−σ(~v ·∇)~B =~ω. (5)

Note the definition of~ω on the right hand side of Eq. (5). We will refer to it often throughout
the development.

Since charge in the conductor is not expected to build up over time, conservation of
charge dictates that the current ~J must be divergence free:

∇ · ~J = 0. (6)

Eqs. (5) and (6) are the starting point for the mathematical model that we will work with in
this paper.

2 Mathematical Models

In this section we further develop the mathematical models used to describe eddy currents
in the shuttle conductor as well as the magnetic fields that drive the eddy currents. In this
analysis we assume that these problems are decoupled and solve first for the magnetic field
and secondly for the eddy currents. We are ultimately interested in calculating the body
forces that arise due to the eddy currents.
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2.1 Eddy Currents

It is important that the mathematical model for Eqs. (5) and (6) address the divergence free
condition on ~J. Because the divergence of a curl is always zero, we choose ~J as:

~J = ∇×~A, (7)

where ~A is a vector potential function. With this definition for ~J, the divergence free con-
dition is automatically satisfied. Substituting into (5) we get

∇× (∇ × ~A) =~ω. (8)

For this analysis, we assume that Bz(x,y) is constant through the thickness of the con-
ductor and that the in-plane components Bx and By are zero throughout the conductor. To
arrive at the final form for ~ω we take~v = vî for the conductor which leads to:

~ω(x,y) =−σv
∂Bz

∂x
k̂ = ωzk̂. (9)

Using our assumptions that ~ω is independent of z and only has a k̂ component, Eq. (8)
reduces to a 2 dimensional scalar Poisson equation [3] for the z-component of ~A:

−∇2Az = ωz. (10)

To complete the model we must consider the boundary conditions for Az. Charge is
constrained to the conductor and this leads the following condition on ~J at the conductor
boundary:

~J ·~n = 0, (11)

where~n is the unit normal to the conductor boundary. Substituting Eq. 7 into Eq. 11 gives

0 = (∇×Azk̂) · n̂. (12)

For the problems considered here, which consist of rectangular domains, it is not difficult
to see that setting Az(x,y) = 0 for (x,y) on the boundary will satisfy Eq. 12.
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2.2 Magnetic Field

As the shuttle conductor moves in the static magnetic field, eddy currents are induced
according to Lenz’s law. Thus we must calculate the magnetic field in the shuttle conductor.
The governing equation for magnetostatics is given by:

∇ ·~B = 0 (13)

We assume a linear constitutive law for ~B as given by:

~B = µ~H (14)

where µ is the magnetic permeability of the medium and ~H is just “H” (apparently ~H has
historically had no sensible name [2] page 260). For purposes of modeling permanent
magnets, the above relation can be written as:

~B = µ0(~H + ~M), (15)

where µ0 = 4π×10−7 N/A2 is the permeability of free space and ~M is the magnetization
vector of the permanent magnet. At material boundaries the normal component of the
magnetic field is required to be continuous. This is expressed mathematically using the
jump bracket notation [~B · n̂] = 0 where n̂ is the unit normal to the material interface. In the
far field it is assumed that ~B =~0.

3 Finite Element Formulation

In this section we develop and discuss the finite element models for both the magnetic field
and eddy current calculations.

3.1 Magnetic Field

For problems in which there are multiple materials, the magnetic field is at best piecewise
continous. This is a direct result of the jump conditions that ~B must satisfy at material
interfaces. In subregions of the computational domain where there is only one material the
magnetic field is smooth. These facts are crucial to the finite element formulation for the
magnetic field. For smooth subregions, the following formula is convenient for deriving
the finite element weak form for the magnetic field:

∇ · (φ~B) = φ∇ ·~B+~B ·∇φ, (16)

10



where φ is a smooth function. Applying the divergence theorem to the left hand side and
rearranging we get:

0 =
∫

Ωs

φ∇ ·~B =−
∫

Ωs

~B ·∇φ+
∫

∂Ωs

φ~B · n̂ (17)

where Ωs is the smooth subregion with boundary ∂Ωs. We can extend the above result to
the entire computational domain by utilizing the jump conditions on ~B at material inter-
faces. Finally, we we eliminate the second integral on the right hand side by choosing test
functions φ that vanish on the boundary. Dropping the subscript on the domain Ω we are
left with:

0 =
∫

Ω
~B ·∇φ (18)

A function ~B that satisfies Eq. (18) is divergence free in the weak sense. Only a mini-
mal amount of regularity is required from φ – it must only have a gradient that is square-
integrable. This facilitates the use of piecewise polynomials as is typical in finite element
formulations.

In order to proceed with the finite element model, we substitute the constitutive Eq. (15)
into Eq. (18):

0 =
∫

Ω
(~H + ~M) ·∇φ (19)

With the assumption that there are no source currents and that the eddy currents are
uncoupled from the static magnetic field, a scalar potential ψ may be utilized to define ~H:

~H =−∇ψ (20)

The magnetization ~M is given data and the scalar potential ψ is the unknown and our
primary variable. With these definitions, we are now ready to define the space of functions
from which we seek the finite element solution for ψ:

H0(Ω) = {φ : ∇φ ∈ L2(Ω), φ = 0 on Γ} (21)

where L2(Ω) is the set of square-integrable functions. Substituting Eqs. (15) and (20) into
Eq. (18), we define the following formal problem for determining the scalar potential ψ:
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find ψ ∈ H0(Ω) such that

A(ψ,φ) = g(φ) ∀ φ ∈ H0(Ω), (22)

where A(ψ,φ) and g(φ) are bilinear and linear forms defined as:

A(ψ,φ) =
∫

Ω
µ0µr∇φ ·∇ψ, (23)

g = µ0

∫

Ωe

~M ·∇φ j. (24)

and µr is the relative permeability of the medium. Note that the magnetization vector ~M is
a known quantity and gives rise to the source term. It is also important to note that ~M and
µr depend upon position. For example, when the region of integration is over a magnet, ~M
is nonzero and µr = 1 whereas over a piece of iron ~M = 0 and µr = µ f e/µ0 where µ f e is the
permeability of iron.

In the finite element method [6], we break up the computational domain into pieces
(finite elements). Over a finite element, the scalar potential function ψ is approximated by
a set of polynomials:

ψe =
N

∑
i=1

ψiφe
i (ξ,η), (25)

where φe
i (ξ,η) are the local element shape functions and N is the number of shape functions

utilized on the element. The scalar values ψi are the unknown degrees of freedom in the
problem.

While the formulation described here is suitable for most element types and applies to
3 dimensions, we implemented the 2 dimensional rectangles as shown in Figure 1. In this
case we used linear interpolation as follows (one for each vertex of the rectangle):

φe
1(ξ,η) = (1− ξ

a
)(1− η

b
),

φe
2(ξ,η) =

ξ
a
(1− η

b
),

φe
3(ξ,η) =

ξη
ab

, (26)

φe
4(ξ,η) = (1− ξ

a
)
η
b
.
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4
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2
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Figure 1. Rectangle finite element shape functions

In the finite element method, it is typical that the test functions φ are the same as those
used to interpolate the primary variable ψ. Substituting the element level interpolation
for ψ given in Eqs. (26) into Eq. (23) and performing the integration yields the following
element stiffness matrix:

Ae = Axe +Aye, (27)

where

Axe =
µ0µrb

6a




2 −2 −1 1
−2 2 1 −1
−1 1 2 −2
1 −1 −2 2


 and Aye =

µ0µra
6b




2 1 −1 −2
1 2 −2 −1
−1 −2 2 1
−2 −1 1 2


 . (28)

Similarly, we can evaluate the right hand side by substituting Eqs. (26) into Eq. (24) and
performing the integations to yield the element level source terms:

ge =
µ0

2




−bMx−aMy
bMx−aMy
bMx +aMy
−bMx +aMy


 . (29)

Again it is important to note that this integral is only evaluated over elements which have a
remnant magnetization vector ~M = Mx î+My ĵ.
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3.2 Eddy Currents

In a practical sense the mathematical models for the eddy currents and the magnetic field are
nearly identical. By integrating Eq. (10) by parts and applying the homogeneous boundary
condition on Az, the following formal weak problem is given: find Az ∈ H0(Ω) such that

C(Az,φ) = g(φ) ∀ φ ∈ H0(Ω) (30)

where C(Az,φ) and h(φ) are bilinear and linear forms defined as:

C(Az,φ) =
∫

Ω
∇Az ·∇φ (31)

h(φ) =
∫

Ω
ωzφ (32)

By setting µ0µr = 1, we can re-use the element stiffness matrices given in Eq. (28).

It is important to note that Ω for the magnetic field and the eddy currents calculations are
different. They have a non trivial intersection but with our assumptions and approximations
they are different. We will discuss this topic in the next section.

While the bilinear forms are nearly identical it is the interpretation and application of
the primary variables that are fundamentally different. We note that ~H is derived from the
primary variable through the gradient operator while the ~J is derived by taking the curl of
the vector potential.

4 Modeling a Device

In this section we discuss the application of the above mathematical models for calculating
the damping forces acting on mechanical oscillators similar to that shown in Figure 2. The
device consists of a relatively thin sheet of metal (shuttle conductor), a set of tethering
flexure springs, and sets of magnet pairs (only 1 pair of magnets shown in figure). Each
pair of magnets is configured so that one magnet is above the shuttle conductor and one is
below. The magnetization vector for each magnet within a pair is the same and is either
along the +z or −z axes. For clarity, two pairs of magnets and their magnetization vectors
relative to the global coordinate system are shown in Figure 3. Additional pairs are added
along the length of the shuttle (along the x axis) with their magnetization vector oriented
in the opposite direction from adjacent pairs. In this way the magnets work together to
strengthen the magnetic field and its gradient along the x direction within the shuttle (note
the definition of ωz given in Eq. (9).

14



Figure 2. Damped Oscillator Schematic

Figure 3. Exploded View of Magnet Pairs (and magnetization) in
Device
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4.1 Magnetic Field

Using the finite element models above, we first solve the problem defined by Eq. (22) for
ψ in the x− z plane. Typical results for the magnetic field are shown in Figure 4. Note
the direction of the field vectors (depicted in blue) in the shuttle conductor (depicted in
red). Purposefully, the shuttle conductor is centered between pairs of magnets, as shown
in Figures (2) and (4), so that there is only one non-zero component of the magnetic field
~B(x,z = 0) = Bz(x)ẑ at z = 0. In this way we satisfy one of our modeling assumptions (see
discussion leading to Eq. 9) for the eddy current analysis. Also note the variation of the
magnetic field within the shuttle as shown in the lower plot of Figure 4.

4.2 Eddy Currents

The shuttle conductor exists in the x− y plane and we assume that the magnets are suffi-
ciently long (in the y direction) compared to the y width of the shuttle conductor so that
the magnetic fields calculated can be assumed to be independent of y. For the eddy current
and force calculations, we must calculate the magnetic field within the shuttle conductor at
z = 0. The shuttle conductor is not a magnetic material and has a relative permeability of
µr = 1. Using this fact and the definition for ~H in Eq. (20) and the interpolation functions
for ψ in Eq. (25), the z-component of the magnetic field in an element is given as:

Bz(x) =−(b1α1(x)+b2α2(x)), (33)

where α1(x), α2(x), b1 and b2 are defined by:

α1(x) = 1− x/a,

α2(x) = x/a,

b1 = µ0
ψ4−ψ1

bz
,

b2 = µ0
ψ3−ψ2

bz
, (34)

These equations are particularly useful for calculating ωz defined in Eq. (9).

ωz =
σv
a

(b2−b1). (35)

We note that it is ωz that drives the eddy currents and that ωz is a linear function of the
conductor velocity and depends upon the gradient of the magnetic field. This fact is crucial
for calculating a damping coefficient described in the next section. Because ωz is constant
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Velocity

Figure 5. Current ~J in y− z plane: Magnets in blue overlay with
~J values plotted at the element centroids

over an element, the integral given in Eq. (32) which defines the right-hand side source
term for the eddy current problem, is easily evaluated on an element:

he(φi) =
ωzab

4




1
1
1
1


 . (36)

Results from an eddy current calculation are shown in Figure 5. These results corre-
spond with the magnetic field shown in Figure 4.

An important verification is that the model correctly predicts no current if the gradient
of the magnetic field is zero. For example, if one large magnet pair completely covered the
shuttle conductor so that their was no variation in the magnetic field within the conductor,
then only Hall voltages would be produced if the conductor were to move. Setting ~J = 0 in
Eq. (4) one can find the Hall field ~E =−~v×~B.

4.3 Calculating Damping Forces

In this analysis we are primarily interested in calculating the forces induced due to the
interaction of the eddy currents ~J with the magnetic field ~B. Using Eq. (1) the calculation
is a post-processing step conducted after both the magnetic field and the eddy currents are
known. In view of Eq. (35), it is obvious that the eddy currents ~J are proportional to the
shuttle conductor velocity. Therefore define a new vector ~̃J by writing ~J as:

~J = v~̃J (37)

We are interested in measuring the amount of eddy current damping induced for a second
order spring-mass system:

Mẍ+Kx = Fx, (38)
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where Fx is the damping force in the x direction, M is the shuttle conductor mass, and K
is the linear flexure spring stiffness of the oscillator shown in Figure 2. To calculate Fx we
substitute Eq. (37) into Eq. (1) to arrive at a damping force per unit volume:

~f = fx î+ fy ĵ = (~̃J×~B)v. (39)

Finally, Fx is found by integrating over the shuttle conductor volume:

~F = Fx î+Fy ĵ =
∫

Ω
fx î+ fy ĵ = v

∫

Ω
~̃J×~B. (40)

The net force acting on the shuttle is exactly the opposite direction of the shuttle velocity.
As previously indicated, the shuttle conductor is constrained to move along the x axis with
velocity v, and therefore the net force on the shuttle becomes:

~F = Fx î+0 ĵ = v
∫

Ω
~̃J×~B =−Cvî, (41)

where we identify the familar damping coefficient C and also the shuttle velocity v = ẋ. For
later reporting we also identify the damping ratio ζ as

ζ =
C

2Mωn
where ω2

n =
K
M

. (42)

To facilitate the calculation of C, recall the definition for ~J in Eq. (7) as well as the
interpolation functions used for Az given in Eq. (26). Using these definitions we evaluate
the integral for C on an element by element basis.

cex î+ cey ĵ =−
∫

Ωe

~̃J×~B, (43)

where

cex =
ab(b1 +b2)( j21 + j22)

4
,

cey =
ab(b1(2 j11 + j12)+b2( j11 +2 j12))

6
, (44)
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Velocity

Figure 6. Magnetic body force distribution

and j11, j12, j21, j22 are defined as:

j11 =
Az4−Az1

b
,

j12 =
Az3−Az2

b
,

j21 =
Az2−Az1

a
,

j22 =
Az3−Az4

a
. (45)

The damping coefficient C is obtained by summing over all elements:

C = t
Ne

∑
e

cex, 0 = t
Ne

∑
e

cey. (46)

where t is the thickness of the shuttle conductor and Ne is the number of elements in the
mesh. Corresponding with Figures 4 and 5, the body force distribution in the shuttle con-
ductor is shown in Figure 6. It is worth noting that one can visually see a net force along
the −x axis. In contrast the net y component of the force is zero ( fy(y) =− fy(−y)).

4.4 Sensitivity Analysis

Using the models described above, sensitivity studies were conducted in order to identify
critical design parameters and investigate how magnetization, magnet spacing, and gap
may affect the damping ratio. Design variables are annotated in Figure 5. The spider plot
shown in Figure 7 compares the effects of modifying individual design parameters and
material properties. The y-axis is the predicted damping ratio ζ (see Eq. (42) )described in
the previous section. In order to make comparisons when modifying parameters that have
different units or scales, the x-axis is normalized such that 0 corresponds to the nominal
value and the difference between the maximum and minimum values is 2. Bounds on
parameters can either represent the design space or uncertainties (see Wittwer, [9], page
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Figure 7. Damping ratio sensitivities: magnet spacing, gap, re-
sistivity, magnetization, beam width

118) and Figure 7 is a combination of both. We note that this sensivity analysis does not
show all possible parameter variations. Of those shown, the magnet spacing, gap and beam
width are design parameters, while resistivity is a property of the shuttle conductor, and
magnetization is a property of the given magnets.

5 Correlation with Measurements

5.1 Experimental Setup and Measurement Results

To demonstrate the effectiveness of eddy current damping and validate the modeling, sev-
eral prototype devices (as shown in Figure 2) were fabricated. These devices were designed
with the facility for adjusting eddy current damping by adding or removing a number of
small magnets.

As shown in Figure 8, the devices were mounted with an adapter to a B&K 4809 shaker
for testing to quantify the damping generated. To measure the motion of the moving parts
relative to the input motion from the shaker, two laser Doppler velocimeters (LDVs) were
used. A pseudo-random voltage signal bandlimited from 10 Hz to 210 Hz was used to
drive the shaker motion. The velocity of the shaker input and the velocity of the shuttle
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Figure 8. Picture of the test setup

mass on the demonstration part were measured independently with the two LDVs. The
ratio of the two measurements gives a frequency domain estimate for the transmissibility
from the shaker input to the shuttle. The excitation was kept low to ensure linearity of the
vibrations and to prevent damage to the part if sharp resonances occurred. The first test
was conducted without any magnets on the demonstration part as a baseline to determine
the structural damping.

Two sets of tests were conducted – one set with magnets only (see Figure 4) and the
second with magnets and a backing plane as shown in Figure 9. Note the increased mag-
netic field strength in the shuttle when the backplane is utilized. The backing plane is a
magnetic shields for space outside the shuttle package and enhances the strength of the
magnetic field in the shuttle by directing the field lines of the individual magnets to more
effectively work together.

Results for these tests are shown in Figures 10 and 11. The frequency response of
the device is included only up to 50 Hz in order to capture the first resonance only. This
resonance, at 28 Hz, is the translation of the shuttle in the direction of excitation. This is
the motion that we are modeling and intending to dampen via magnetic forces. As magnets
are added the damping ratio increases significantly and with the addition of the backing
plate the damping ratio increases beyond a value of ζ = 1.0 (critical damping).

A linear second order curve-fit [5] (see the Appendix section for additional details) of
the region near the first resonance was used to identify the natural frequency and damping
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Number of Natural Damping
Magnet Pairs Frequency (Hz) Ratio

0 28.1 0.0002
1 27.6 .10
2 27.2 .21
3 27.9 .46
4 31.0 .62
5 31.4 .73

Table 1. Curve-fitting results for demonstration tests

Number of Natural Damping
Magnet Pairs Frequency (Hz) Ratio

2 29.7 .55
3 29.5 .84
4 33.0 1.05
5 32.8 1.25

Table 2. Curve-fitting results for demonstration tests with a back-
ing plate

ratio for each case. This data is reported in Tables 1 and 2. Damping ratios are written as a
fraction of critical damping. As shown in Table 1 and Figure 10, there is very little damping
without magnets. With the addition of just one pair of magnets, damping is increased sig-
nificantly. With each additional pair of magnets the data shows increased levels of damping
although the increase is not as significant as that seen with the first pair. The addition of
the backing plate drives the damping even higher. Table 2 shows damping values for cases
with the backing plate. Once the damping ratio goes beyond 1.0, roots of the second-order
curve-fit of the resonance cease to be complex but we continue to treat it as though it is
complex to be consistent in our comparisons.

We finally note that the reported natural frequency ωn tends to increase with increasing
levels of damping. At this time we do not have an explanation for this.

5.2 Model Validation

To compare experimental results to the model, it is necessary to take into account uncer-
tainties in the input data. Here we have included magnetization, resistivity, beam width,
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Variable Units Value
Gap mm 1.8±0.08

Resistivity Ω−m 4e−8±0.3e−8
Magnetization Tesla 1.15±0.05
Beam Width µm 85±5

Table 3. Uncertainty analysis input data

and other values that were found to be important factors from the sensitivity study. Table 3
lists the values and uncertainties used in the simulation-based uncertainty analysis.

Recall that the modeled damping ratio is calculated using Eq. (42) which depends di-
rectly upon the flexure stiffnesses of the tethering springs (as shown in Figure 2) through
the natural frequency ωn. For the simulation, a natural frequency of 30.8 Hz was calculated
as in [8] using

K =
2Etw3

L3 , (47)

where E is young’s modulus, t is the shuttle thickness, w is the flexure width, and L is the
length of the flexures. Note that the damped oscillator shown in Figure 2 is monolithic
(i.e. fabricated from a single layer of material). The beam width w is crucial to the stiff-
ness calculation since the stiffness depends cubicly on this parameter. Beams widths were
measured using a scanning electron microscope.

The analysis was performed using a second-order surrogate-based Monte Carlo method
[9]. This approach first creates a multi-dimensional second-order response surface for the
domain represented by the uncertainties in Table 3. This surrogate model is then used in a
Monte Carlo simulation consisting of 10000 function evaluations, where the uncertainties
are independent uniform distributions. The resulting mean, standard deviation, and 95%
intervals for the predicted damping ratio are reported in Tables 4 and 5.

The results of the simulation-based uncertainty analysis show that the model is consis-
tently predicting a damping ratio higher than the measured value (see Figure 12). In some
cases, the measured value falls within the 95% intervals. Although the model is showing
some bias, the trends shown in Figure 12 are in good.

The fact that some of the measurements lie outside of the 95% intervals indicates that
the given uncertainties alone do not account for the observed model bias. More work is
required to determine what is causing the difference between the model and the measure-
ments. The assumption that the magnetic field is completely 2-dimensional may be one
source of this bias. At the ends of the magnets, the fields are actually 3-dimensional, so our
model will over-predict the strength of the field and subsequently over-predict the damp-
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Measured Model
Magnet Pairs ζ ζ StDev 95% Interval

1 0.1 0.15 0.014 [0.13,0.18]
2 0.21 0.31 0.028 [0.26,0.37]
3 0.46 0.51 0.046 [0.43,0.61]
4 0.62 0.70 0.064 [0.59,0.84]
5 0.73 0.88 0.080 [0.73,1.04]

Table 4. Measured and calculated ζ: uncertainty analysis results
(no back plate)

Measured Model
Magnet Pairs ζ ζ StDev 95% Interval

2 0.55 0.60 0.054 [0.50,0.71]
3 0.84 0.93 0.084 [0.77.1.10]
4 1.05 1.29 0.116 [1.08,1.53]
5 1.25 1.57 0.143 [1.31,1.86]

Table 5. Uncertainty Analysis Results (with backplane)

28



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Magnets

D
am

pi
ng

 R
at

io
, ζ

Measured

Model
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damping ratio

ing forces and coeffient. This hypothesis is supported by the data because as the number
of magnets increases the model overpredicts the measured data by an increasing amount.
Modeling the 3-dimensional magnetic field would likely lead to more accurate results.

The uncertainty contributions associated with Figure 4 are depicted in the pie chart
Figure 13. This first order sensitivity analysis (based upon numerical calculation of first-
order sensitivities) shows that all of the uncertainties included in the simulation have a
significant effect on the damping ratio.

6 Conclusions

In this paper we presented mathematical and numerical models for two dimensional quasi-
static eddy currents in a thin conducting sheet. Using the models, we reported the results
of design sensitivity and model based uncertainty analyses. To validate the models we
reported on damping measurements using Laser Dopler Velocimeters. Although analyses
showed that there was some bias, possibly due to three dimensional magnetic field effects
not included in the model, there was good correlation of the model with experimental data.
It was shown that the model is useful for predicting eddy current damping forces.

Based upon the results and analysis in this paper we conclude that using a 2-d magnetic
field over predicts the magnetic forces near the ends of the magnets and thus over predicts
the damping coefficient. As shown by the data and analysis, this effect increases with
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increasing number of magnets. Using a 3-d magnetic field in the model would tend to
increase the correlation of the measured damping coefficients with those predicted by the
model.
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Figure A.1. Comparison of Experimental Data and Analytical
Curve Fit for the No Magnets Case

A Frequency Response Curve Fitting

A linear second order curve-fit of the first resonance was used to identify the resonant
frequency and damping for each case. The data collected was transmissibility and the
single degree of freedom transmissibility in the Laplace domain has the form

H(s) =
b1s+b0

s2 +a1s+a0
. (48)

where a1 = 2ζωn and a0 = ω2
n. The vaiables b1 and b0 do not directly affect the resonant

frequency and damping that we are looking for. All of these variables are determined using
a least squares fit to the experimental data. Figures A.1, A.2, and A.3 show three example
data sets curve fit using this method. In all cases the fit close to the peak amplitude is very
good. The deviation of the curve fit from the experimental data at higher frequencies is due
to unmodeled dynamics at higher frequencies.

33



10 15 20 25 30 35 40 45 50
−5

0

5

Frequency (Hz)

|X
/X

ba
se

|, 
dB

Experimental Data
Curve Fit

10 15 20 25 30 35 40 45 50
−180

0

180

P
ha

se

10 15 20 25 30 35 40 45 50
0

0.5

1

C
oh

er
en

ce
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